Obras Civis	1
Instalações Elétricas/Telefônicas	1.06
Subestação Transformadora em Poste 1	

01. DEFINIÇÃO

Compreende o fornecimento de materiais, equipamentos e mão-de-obra para a instalação de Subestação Transformadora em Poste de Concreto.

Entende-se por Subestação Transformadora em Poste como a instalação elétrica do consumidor destinada a receber o fornecimento de energia, em tensão primária de distribuição, com uma ou mais funções de manobra, proteção, medição e transformação, montada ao tempo, em poste de concreto, com ou sem plataforma.

Considera-se nesta Especificação somente a instalação elétrica do conjunto. Os serviços de construção civil deverão estar de acordo com as Especificações pertinentes.

02. MÉTODO EXECUTIVO

A seqüência dos serviços necessários à instalação do conjunto referente à Subestação Transformadora em Poste compreenderá :

- 🖒 Serviços de construção civil :
 - Escavação (manual ou mecânica) para a base do poste;
 - Assentamento de poste de concreto, inclusive chumbação e estaiamento, quando necessário;
 - Execução da plataforma (quando for este o caso).
- Serviços de instalações elétricas :
 - instalação de transformador;
 - Montagem dos equipamentos de proteção e medição;
 - Aterramento do conjunto;
 - Ligação do conjunto à rede de distribuição de energia;
 - Teste do conjunto.

Estes serviços deverão ser executados de acordo com as Especificações pertinentes da CEHOP e da Concessionária local de energia .

Os d/etalhes das montagens e suas respectivas listagens de materiais estão apresentadas a seguir.

Obras Civis	1
Instalações Elétricas/Telefônicas	1.06
Subestação Transformadora em Poste	1.06.02

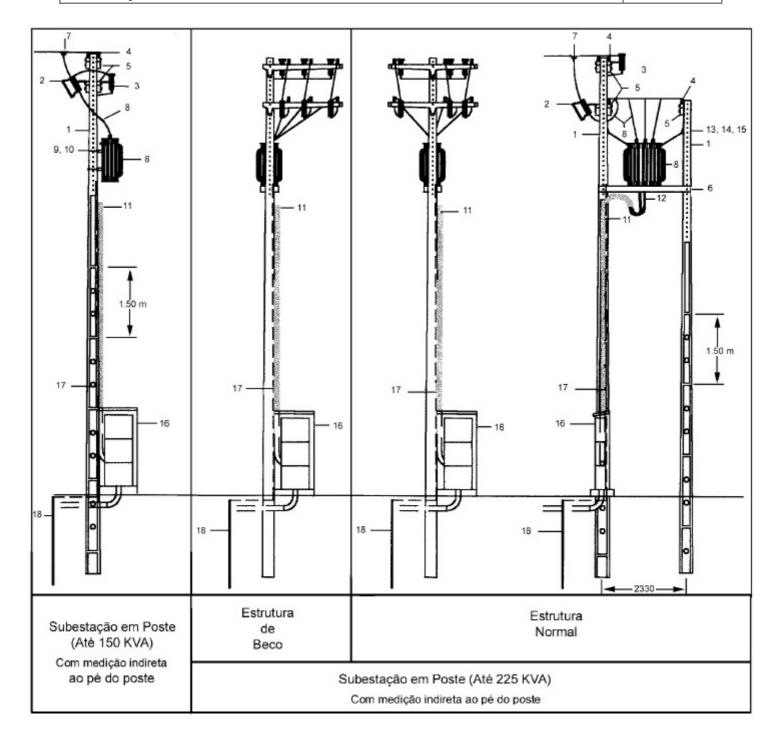


Figura 01. Subestação Transformadora em Poste

Obras Civis	1
Instalações Elétricas/Telefônicas	1.06
Subestação Transformadora em Poste	1.06.02

ITEM	DESCRIÇÃO		
01	Poste de concreto duplo "T" (10/300-11/300)		
02	Chave fusível 15 KV-100 A rutura assimétrica 10.000 A		
03	Pára-raios 12 KV c/ desligamento automático, resistência não linear		
04	Isolador de pino (multi-corpo) de porcelana para 15 KV		
05	Cruzeta de concreto tipo "T", 1900 mm ("L", 1700 mm)		
06	Cruzeta de concreto (madeira) para banqueta, 2440 mm		
07	Grampo de Linha Viva 6 a 250 MCM, ramal 8 a 2/0 AWG		
08	Fio de cobre nu meio duro #6 AWG (Cabo de cobre nu #2 AWG)		
09	Suporte para transformador em poste duplo "T"		
10	Parafuso cabeça quadrada adequado		
11	Eletroduto de PVC rígido ou ferro galvanizado		
12	Cabo de cobre isolado para 750 V (1000 V) – 50MM ²		
13	Parafuso cabeça quadrada adequado		
14	Chapa para estai 45°, furo 18 mm		
15	Cabo de aço para estai 6,4 mm (média resistência)		
16	Caixa de medição indireta padrão ENERGIPE		
17	Cabo de aço cobreado 3x9 AWG		
18	Haste de aço cobreado 5/8"x 3000 mm		

Transformadores

Antes da montagem deverá ser feita a inspeção visual para se verificar o estado do tanque e dos isoladores do transformador.

Antes da energização deverão ser verificadas a continuidade das conexões, o nível de óleo do transformador e o seu isolamento.

O transformador deverá ser elevado e posicionado de modo a não ser submetido a esforços mecânicos desnecessários para sua carcaça e suas buchas. As conexões ao sistema deverão ser efetuadas de modo a assegurar bom contato e não gerar esforços mecânicos nas buchas do transformador.

03. CRITÉRIOS DE CONTROLE

Toda a instalação deverá estar de acordo com as especificações da Concessionária local de energia. Alguns requisitos básicos deverão ser observados:

Localização

As instalações deverão ser localizadas de forma a permitir fácil acesso e a disposição dos equipamentos deverá oferecer condições adequadas de operação, remoção (inclusive com guindaste), manutenção e segurança.

Deverão ser localizadas junto ao alinhamento da propriedade particular com a via pública, salvo recuo estabelecido por posturas governamentais. Mediante acordo entre a Concessionária e o consumidor, poderá ser aceita localização diferente para o conjunto Proteção/Medição/Transformação até o limite máximo de 50 m do alinhamento do terreno. Ultrapassado este limite, deverá ser construído um cubículo abrigado para a instalação dos equipamentos de Proteção e Medição a, no máximo, 5m do limite da propriedade com a via pública.

Sendo o transformador instalado em poste ou plataforma, deverá estar a um mínimo de 2,5m de distância horizontal de janelas, sacadas, telhados e rede elétrica existente ou outros pontos de eventual acesso de pessoas.

Montagem

A montagem deverá seguir o projeto da instalação, respeitando as normas existentes.

O transformador deverá estar fixado corretamente.

A instalação em poste singelo será para transformadores de, no máximo, 150kVA. Para transformadores de potência nominal até 225kVA poderá ser utilizada a instalação em plataforma.

As conexões de AT (Alta Tensão) e BT (Baixa Tensão) deverão ser efetuadas de modo a assegurar a conexão correta e não gerar esforços

Obras Civis	1
Instalações Elétricas/Telefônicas	1.06
Subestação Transformadora em Poste	1.06.02

mecânicos nas buchas do transformador, mesmo em caso de eventual curto-circuito.

Transformadores

Deverão apresentar as seguintes características:

- □ Obedecer a NBR5356 e 5440;
- Ter potência de acordo com a demanda máxima prevista ou ligeiramente superior até 20% de sobrecarga;
- Ter frequência de 60Hz;
- Ter tensão primária em triângulo, de acordo com a Concessionária;
- Ter tensão secundária de 220/127V em estrela, com neutro acessível;
- Ter isolamento de acordo com a tensão primária local;

Transformadores de Potência utilizados com mais freqüência

Potência (KVA)	Classe (KV)	Freqüência (Hz)	Alta Tensão (KV)	Baixa Tensão (V)
15	15	60	13,8	220/127
30	15	60	13,8	220/127
45	15	60	13,8	220/127
75	15	60	13,8	220/127
112,5	15	60	13,8	220/127
150	15	60	13,8	220/127
225	15	60	13,8	220/127

Eletrodutos

Todos os condutores deverão ser protegidos por eletrodutos rígidos desde a saída dos terminais do transformador.

Os tubos e luvas de aço rígido deverão ser sem costura, com rosca BSP e apresentar acabamento galvanizado à quente, interna e externamente.

Isoladores

Serão do tipo disco, diâmetro 175mm, e tipo pino para 15kV, com ferragens de fixação.

Caixas

Deverão ser em chapa de ferro no 16, para embutir em abrigo de alvenaria, nos padrões exigidos pela Concessionária, apresentar acabamento antiferruginoso e pintura.

Cabos

Os cabos de cobre deverão ser de alta condutibilidade, com revestimento termo-plástico e apresentar nível de isolamento para 750V na temperatura de 70° C.

Barramentos

Será obrigatória a utilização de barramento sempre que houver mais de cinco unidades consumidoras ou mais de seis condutores (fases + neutro comum) no ramal de entrada coletivo.

Deverão ser feitos em barra de cobre.

Os afastamentos mínimos recomendados em tensão primária deverão estar de acordo com a NBR 5414.

Quando se elevar a potência de transformação (aumento de carga) os barramentos deverão ser redimensionados.

Os barramentos, quando pintados, deverão ter as seguintes cores :

- FASE A vermelho;
- ☐ FASE B amarelo;
- å NEUTRO azul claro.

Disjuntores

Visando a proteção geral de Baixa Tensão, deverão ser instalados em caixa seccionadora ou compartimento lacrado, em local que permita fácil operação em caso de emergência.

Medição

A medição deverá ser dimensionada de acordo com a capacidade do transformador e executada em caixas padrões instaladas em abrigo de alvenaria, conforme projeto executivo de elétrica.

Obras Civis	1
Instalações Elétricas/Telefônicas	1.06
Subestação Transformadora em Poste	

Os medidores deverão ser agrupados em um ou mais painéis em locais de fácil acesso ao leiturista.

Proteção contra curto-circuitos

Para potências até 225kVA, deverão ser instaladas chaves fusíveis indicadoras, de abertura com carga, dimensionadas de acordo com a potência de cada transformador.

Proteção contra descargas atmosféricas

Deverá ser instalado pára-raios tipo válvula, com desligador automático, para 15kV e com ferragens de fixação.

Os pára-raios deverão ser instalados na estrutura do transformador.

A ligação entre os pára-raios e o sistema de aterramento deverá ser feita através de um condutor de cobre nu de 35 mm² ou aço cobreado 2 AWG, no mínimo. Este condutor deverá ser tão curto quanto possível, evitando-se curvas e ângulos pronunciados. A descida do cabo para a malha de terra deverá ser protegida por tubo de fero galvanizado com diâmetro mínimo de 20 mm, até uma altura de 2,80 m, a partir do solo.

Aterramento

Deverá ser instalado um sistema de aterramento visando-se proteger as partes metálicas da instalação. O valor da resistência de terra máxima, medida em qualquer época do ano deverá ser de 20 Ohms.

A haste COPPERWELD deverá ter 16mm X 3,00m e ser revestida de cobre por deposição eletrolítica.

Em toda instalação deverá ser previsto um terminal (ou barra) de aterramento principal e os seguintes condutores deverão ser ligados:

- ☐ Condutores de proteção;
- 🖒 Condutores da ligação equipotencial principal;
- Condutor de aterramento funcional, se necessário.

A distancia mínima entre eletrodos, caso seja necessário utilizar mais de um, deverá ser igual ou maior que seu comprimento; deverão ser interligados por meio de condutores de cobre ou de aço cobreado, de bitola mínima de 35mm2 para cabo de cobre e 2 AWG para aço cobreado.

Havendo limitações físicas para colocação dos eletrodos, poderão ser utilizadas outras técnicas de aterramento, desde que respeitado o valor da resistência máxima de terra de 20 Ohms.

Os condutores de aterramento deverão ser contínuos, isto é, não deverão ter em série nenhuma parte metálica da instalação.

A ligação do condutor ao sistema de aterramento deverá ser feita por solda exotérmica, não sendo permitido o uso de solda simples. Opcionalmente, poderá ser aceito grampo de aterramento tipo "U", desde que possua caixa de inspeção em todas as conexões.

O neutro dos transformadores deverá ser solidamente aterrado o mais próximo possível do mesmo e a sua ligação ao sistema de aterramento deverá ser feita através de condutor de cobre, dimensionado de acordo com o condutor das fases. As carcaças dos transformadores, disjuntores, chaves e quaisquer outras partes metálicas que não conduzam corrente deverão ser aterradas. A ligação entre cada uma delas e o sistema de aterramento será feita por um único condutor de cobre nu, de seção 25mm2 (preferível 35mm2).

A conexão à malha de terra deverá ser feita com conector apropriado.

Conectores

Nas emendas e derivações devem ser usados conectores apropriados ou solda tipo exotérmica, não se permitindo o uso de solda estanho.

Ferragens

Todas as ferragens deverão ser zincadas a fusão e atender à NBR5706.

04. CRITÉRIOS DE MEDIÇÃO E PAGAMENTO

Para fins de pagamento, a unidade de medição será a unidade instalada, ligada à rede de distribuição,

Obras Civis	1
Instalações Elétricas/Telefônicas	1.06
Subestação Transformadora em Poste	

testada, aceita pela Fiscalização e aprovada pela Concessionária local de energia.

Considera-se nesta Especificação somente a instalação elétrica do conjunto. Os serviços de construção civil deverão estar de acordo com suas respectivas Especificações e serão medidos conforme as composições pertinentes.

O pagamento será por preço unitário contratual e conforme medição aprovada pela Fiscalização.

05. DOCUMENTOS DE REFERÊNCIA

FONTE	CÓDIGO	DESCRIÇÃO	
ABNT	NBR 5283	Disjuntores em média tensão	
ABNT	NBR 05380	Transformador de Potência	
ABNT	NBR 05381	Chaves de faca, tipo seccionadora, não blindadas, para baixa tensão	
ABNT	NBR 05414	Execução de instalações elétricas de alta tensão de 0,6 a 15 KV	
ABNT	NBR 05416	Aplicação de Cargas em Transformadores de Potência	
ABNT	NBR 05433	Redes de Distribuição de Energia Elétrica - Aérea Rural	
ABNT	NBR 05434	Redes de Distribuição de Energia Elétrica - Aérea Urbana	
ABNT	NBR 05458	Transformador de Potência	
ABNT	NBR 05440	Transformadores para redes aéreas de distribuição - características elétricas e mecânicas	
ABNT	NBR 5706	Coordenação modular da construção.	
ABNT	NBR 08158	Ferragens Eletrotécnicas para Redes Aéreas Urbanas e Rurais de Distribuição de Energia Elétrica	
ABNT	NBR 08159	Ferragens Eletrotécnicas para Redes Aéreas Urbanas e Rurais de Distribuição de Energia Elétrica. Formatos, dimensões e tolerâncias	
ABNT	NBR 05449	Dimensionamento de Cabos Pára-Raios para Linhas Aéreas de Transmissão de Energia Elétrica	
ABNT	NBR 08451	Postes de Concreto Armado para Redes de Distribuição de Energia Elétrica	
ABNT	NBR 08452	Postes de Concreto Armado para Redes de Distribuição de Energia Elétrica Dimensões	
ABNT	NBR 08453	Cruzeta de Concreto Armado para Redes de Distribuição de Energia Elétrica	
ABNT	NBR 08454	Cruzeta de Concreto Armado para Redes de Distribuição de Energia Elétrica Dimensões	
ABNT	NBR 08456	Postes de Eucalipto Preservado para Redes de Distribuição de Energia Elétrica	
ABNT	NBR 08457	Postes de Eucalipto Preservado para Redes de Distribuição de Energia Elétrica Dimensões	
ABNT	NBR 08458	Cruzetas de Madeira para Redes de Distribuição de Energia Elétrica	
ABNT	NBR 08459	Cruzetas de Madeira - Dimensões	
ABNT	NBR 08926	Guia de Aplicação de Relés para a Proteção de Transformadores	
ABNT	NBR 11770	Relés de Medição e Sistemas de Proteção	
ABNT	NBR 11790	Isolador Suporte de Porcelana ou Vidro para Tensões acima de 1000 V	
ABNT	NBR 11835	Acessórios Isolados Desconectáveis para Cabos de Potência para Tensões de 15 KV e 35 KV	
COELBA		Manual de Fornecimento em Baixa Tensão em Edificações Individuais – 4ª edição – 1996	
COELBA		Manual de Fornecimento em Tensão classe 15kV – 3ª edição - 1996	

