Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	2.09.03

01. DEFINIÇÃO

Tratam-se de dispositivos destinados a transportar o fluxo de águas pluviais entre dois pontos. Os bueiros mais freqüentemente usados são os seguintes:

Bueiros de Grota

Obras de arte correntes que se instalam no fundo dos talvegues. No caso de obras mais significativas correspondem a cursos d'água permanentes e, consequentemente, obras de maior porte. Por se instalarem no fundo das grotas, estas obras deverão dispor de bocas e alas.

Bueiros de Greide

Obras de transposição de talvegues naturais ou ravinas que são interceptadas pela rodovia e que por condições altimétricas, necessitam de dispositivos especiais de captação e deságüe, em geral caixas coletoras e saídas d'água (Figura 01). Bueiros celulares

Obras de arte correntes, de porte razoável, que se instalam no fundo dos talvegues e, em geral, correspondem a cursos d'água permanentes. Por razões construtivas e estruturais são construídos em seções geometricamente definidas, na forma de retângulos ou quadrados, podendo ser de células únicas ou múltiplas, separadas por septos verticais (Figura 02).

Bueiros Metálicos Executados sem Interrupção do Tráfego

Obras de arte correntes destinadas ao escoamento de cursos d'água permanentes ou temporários, executadas por processo não destrutivo. Para sua construção são utilizadas chapas de aço corrugadas, fixadas por parafusos e porcas ou grampos especiais, cujo avanço de instalação é alcançado com o processo construtivo designado "Tunnel-Liner".

Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	2.09.03

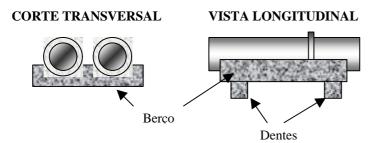


Figura 01 - Bueiro Duplo Tubular de Concreto

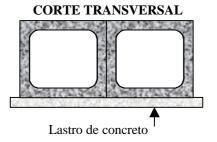


Figura 02 - Bueiro Duplo Celular de Concreto

02. MÉTODO EXECUTIVO

Bueiros Tubulares De Concreto

Os tubos de concreto armado a serem empregados terão armadura simples ou dupla e serão do tipo de encaixe macho e fêmea ou ponta e bolsa, devendo atender às prescrições das Normas em vigor. A classe de tubo a empregar deverá ser compatível com a altura de aterro prevista. As alturas de aterros máximas indicadas no "Álbum de Projetostipo de Dispositivos de Drenagem" do DNER referem-se à situação de bueiros salientes. Essas alturas deverão ser majoradas, para bueiros executados em valas, ou reduzidas, para bueiros executados sem berços ou com berços de qualidade inferior, a critério do projetista. Os tubos deverão ser rejuntados com argamassa de cimento e areia no traço 1:3 em volume.

As etapas construtivas a serem atendidas na construção dos bueiros tubulares de concreto são as seguintes:

- Locação da obra, de acordo com os elementos especificados no projeto. A locação será efetuada com piquetes espaçados de 5 m, nivelados de forma a permitir a determinação dos volumes de escavação. Os elementos de projeto (estaca do eixo, esconsidade, comprimentos e cotas) poderão sofrer pequenos ajustes de campo. A declividade longitudinal da obra deverá ser contínua.
- Escavação das trincheiras necessárias à moldagem dos berços, que poderá ser executada manualmente ou mecanicamente, devendo ser prevista uma largura superior em 30 cm à do berço, para cada lado. Caso haja necessidade de execução de aterros para

- atingir a cota de assentamento do berço, estes deverão ser executados e compactados em camadas de, no máximo, 15 cm.
- 🖒 Colocação das formas laterais dos berços.
- È Execução da porção inferior do berço com concreto ciclópico com 30 % de pedra de mão, até se atingir a linha correspondente à geratriz inferior dos tubos. Vibrar o concreto mecanicamente.
- Assentamento dos tubos sobre a porção inferior do berço, tão logo o concreto utilizado apresente resistência para isto. Se necessário, utilizar guias ou calços de madeira ou de concreto pré-moldado para fixar os tubos na posição correta.
- Description de Complementação da concretagem do berço, imediatamente após a colocação dos tubos. Vibrar o concreto mecanicamente.
- 🖒 Retirada das formas laterais do berço.
- A Rejuntamento dos tubos com argamassa de cimento e areia no traço 1:3 em volume.
- Execução do reaterro, preferencialmente com o próprio material escavado, desde que seja de boa qualidade. Caso não o seja, importar material selecionado. A compactação do material de reaterro deverá ser executada em camadas individuais de, no máximo, 20 cm de espessura, por meio de sapos mecânicos, placas vibratórias ou soquetes mecânicos. O equipamento utilizado deverá ser compatível com o espaço previsto no projeto-tipo entre linhas de tubos de bueiros duplos ou triplos. Especial atenção deverá ser dada na compactação junto às paredes dos tubos. O

Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	

reaterro deverá prosseguir até se atingir uma espessura de 60 cm acima da geratriz superior externa do corpo do bueiro.

- Execução das bocas de montante e jusante. Caso as bocas de montante sejam do tipo caixa coletora de sarjetas (bueiros de greide) ou de talvegue (bueiro de grota), deverão ser atendidos procedimentos executivos previstos nas especificações correspondentes a estes dispositivos. As bocas tipo nível de terra deverão ser executadas com concreto ciclópico, atendendo às imposições geométricas do projeto-tipo adotado.
- Concluídas as bocas, deverão ser verificadas as condições de canalização a montante e jusante da obra. Todas as erosões encontradas deverão ser tratadas com enrocamento de pedra arrumada ou por soluções específicas de projeto. Deverão ser executadas as necessárias valas de derivação, a jusante, e bacias de captação, a montante, de forma a disciplinar a entrada e saída do fluxo de água no bueiro.

Observações gerais:

- Depretation de Preferencialmente deverão ser executadas bocas normais, mesmo para bueiros com pequenas esconsidades. Isto poderá ser feito prolongando-se o corpo do bueiro e/ou ajustando-se os taludes de aterro às alas das bocas normais.
- Caso a opção em relação a bueiros esconsos seja pela execução de bocas também esconsas, ajustar a esconsidade da obra à esconsidade padronizada mais próxima (0º, 15º, 30º ou 45º).
- Quando existir solo com baixa capacidade de suporte no terreno de fundação, o berço deverá ser executado sobre um enrocamento de pedra jogada.
- Quando a declividade longitudinal do bueiro for superior a 5 %, o berço será provido de dentes, fundidos simultaneamente e espaçados de acordo com o previsto no projeto-tipo adotado.
- Decionalmente o berço poderá ser fundido em uma só etapa com o tubo já assentado sobre guias transversais pré-moldadas de concreto ou de madeira (2 guias por tubo).

- Também opcionalmente poderão ser utilizados tubos de encaixe tipo ponta e bolsa, a critério da Fiscalização. Neste caso, as dimensões transversais dos berços e bocas, inclusive nos projetos-tipo adotados, deverão ser aumentadas para comportar as saliências das bolsas, para bueiros com linhas múltiplas.
- Serão executados dissipadores de energia conectados à boca de jusante, nos locais indicados em projeto.

Bueiros Metálicos

Materiais

1. Chapas metálicas corrugadas galvanizadas

Serão utilizadas chapas metálicas corrugadas galvanizadas para os casos em que não sejam previstas condições de utilização agressivas. As chapas serão fornecidas pelo fabricante acompanhadas dos parafusos e porcas necessários à montagem, bem como das ferramentas apropriadas.

 Chapas metálicas corrugadas revestidas com epóxi

A utilização de chapas metálicas corrugadas revestidas com epóxi é indicada para situações em que sejam previstas condições de utilização agressivas, como aquelas que prevalecem em regiões litorâneas, regiões urbanas e na condução de esgotos sanitários e/ou despejos industriais. Além das porcas, parafusos e ferramentas necessários à montagem, o fabricante deverá fornecer pincéis e resina epóxi destinados ao retoque de eventuais pontos em que o revestimento tenha sido danificado durante o transporte ou manuseio das chapas.

3. Material de enchimento

Para o enchimento dos espaços vazios existentes entre a face externa das chapas metálicas corrugadas e o solo de aterro, será utilizada argamassa fluida constituída de solo argiloso, cimento e água, obedecendo ao seguinte traço aproximado, estabelecido para um misturador com capacidade de 250 litros:

Ů	Cimento 13 kg;	
Ţ	Água 20 litros	

Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	2.09.03

ជំ Argila peneirada...250 kg.

A argamassa assim preparada, deverá apresentar uma resistência à compressão simples, aos 28 dias, de, no mínimo, 15 mpa.

4. Material vedante

Caso se deseje incrementar a estanqueidade do bueiro metálico, deverão ser introduzidas tiras de feltro nas emendas das chapas.

5. Concreto para as bocas de saída

O concreto utilizado nas saídas deverá atender às especificações para bocas de saída de bueiros tubulares de concreto e para saídas de bueiros celulares de concreto, conforme o diâmetro do bueiro metálico seja, respectivamente, inferior ou superior a 160 cm.

Etapas executivas

As etapas executivas a serem atendidas na construção dos bueiros metálicos por processo não destrutivo são as seguintes:

6. Investigação do terreno

Previamente à execução da obra, deverão ser efetuadas sondagens a percussão, objetivando a determinação do nível do lençol freático e dos resultados de SPT (Standard Penetration Test). Estes parâmetros se prestarão a orientar a escolha do tipo de escoramento a ser adotado.

7. Abertura do poço de ataque

Caso não seja viável, em função das condições locais, o emboque direto, deverão ser abertos, em pontos convenientes, poços de ataque de seção circular, escorados com as mesmas chapas metálicas com diâmetro imediatamente superior ao utilizado no corpo do bueiro.

Os poços de ataque revestidos poderão ser aproveitados como poços de visita definitivos, caso julgado necessário.

8. Esgotamento

No fundo do poço de ataque, caso necessário, deverá ser escavado um reservatório onde se instalará uma bomba de água elétrica submersa. O reservatório deverá ficar em cota mais baixa do que a da geratriz inferior do bueiro, recebendo toda a

água de infiltração advinda das paredes do poço de ataque e do próprio corpo de bueiro. Para favorecer o escoamento da água de infiltração, o bueiro deverá ser executado no sentido de jusante para montante.

9. Implantação

Tendo sido locado o eixo da obra, será iniciada a escavação manual da frente de ataque, que poderá se dar a partir do próprio talude de aterro ou de um poço de ataque.

A escavação deverá ser feita dentro de um perímetro o mais próximo possível da circunferência externa do bueiro, e com profundidade aproximadamente igual ao comprimento de cada chapa, em geral 46 cm.

Imediatamente após a escavação, será executada a montagem do primeiro anel, ajustando-se as chapas ao terreno e fixando-as umas às outras com os parafusos e porcas específicos.

Para o prosseguimento das operações, serão repetidas sucessivamente as etapas de escavação e montagem de cada anel.

Em casos excepcionais, onde o terreno não exibir resistência satisfatória, será adotado o seguinte sistema alternativo:

À medida em que for sendo feita a escavação manual da frente de ataque, deve-se cravar no terreno, à frente da escavação, uma aba metálica em forma de abóbada circular. Essa aba metálica terá apoio deslizante sobre uma viga metálica que será suspensa nos flanges do trecho já executado e terá sua ponta solidamente cravada no terreno ainda não escavado. A aba metálica suportará a abóbada de solo proveniente da escavação até que um novo anel tenha sido montado sob proteção da A partir dessa fase, o novo anel já terá condições de substituir a função da aba, quando esta for avançada. O deslocamento da aba para proteger a escavação do anel seguinte é feito cravando-a para a frente com o auxílio de macacos mecânicos apoiam em que se convenientemente fixadas nos flanges do bueiro metálico. Essas orelhas vão sendo removidas à medida em que a frente de trabalho vai progredindo. A frente que será escavada terá seu talude escorado por um escudo frontal constituído de chapas metálicas retangulares ou trapezoidais com espessura de 1/4". Estas cobrirão toda a superfície

Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	2.09.03

do talude frontal. As chapas devem ser escoradas com pressão sobre o terreno por estroncas metálicas apropriadas, extensíveis à custa de dispositivo telescópico e de rosca para aperto final. As estroncas serão apoiadas nos flanges do trecho já montado. Para permitir a escavação da frente, as chapas metálicas que constituem o escudo frontal serão removidas uma de cada vez. Posteriormente, serão montadas novamente, com aperto contra o terreno após a escavação do solo de um comprimento correspondente a um novo anel. Depois que todas as chapas do escudo frontal forem transferidas para a frente, o espaço escavado permitirá a montagem de novo anel. Durante a montagem do novo anel, a câmara de trabalho estará com a frente escorada pelo escudo frontal e o teto da escavação sustentado pela abóbada da aba. Depois de montado o anel, novas séries de operações permitem a montagem dos anéis sequintes, e assim sucessivamente. Os anéis serão solidarizados nos adjacentes por parafusos e porcas galvanizados de 16 x 32 mm ou 16 x 18 mm, de acordo com a bitola, que devem ser distribuídos ao longo dos flanges laterais dos anéis. As chapas de cada anel serão emendadas por trespasse de parafusos e porcas das mesmas dimensões, porém com o pescoço quadrado e providos de arruelas de pressão, que mantêm o parafuso no furo também quadrado da chapa, para permitir que a porca seja apertada pelo lado interno.

10. Vedação

Na eventualidade de se desejar aumentar a estanqueidade do bueiro metálico, deverão ser introduzidas tiras de feltro nas emendas das chapas.

11. Enchimento

Os espaços vazios existentes entre a face externa dos anéis metálicos e o terreno natural deverão ser preenchidas a fim de se evitar recalques posteriores. Para tal, deverá ser utilizado o material fluido de enchimento especificado, o qual será injetado através de furos com diâmetro de 1.1/2" executados em chapas alternadas. Para a injeção será utilizada bomba de deslocamento positivo, que permita recalcar a massa fluida com pressão de 1 mpa.

Opcionalmente, e a exclusivo critério da Fiscalização, o enchimento poderá ser feito, após a montagem de cada anel, com a utilização de soquetes de madeira, especialmente construídos para este fim.

12. Acompanhamento topográfico

A declividade e o alinhamento definidos no projeto serão controlados topograficamente, a cada etapa de montagem.

13. Condições especiais:

Lençol freático

A presença de lençol freático elevado poderá levar à necessidade de soluções especiais para o seu rebaixamento, como a utilização de drenos subhorizontais. Estes serviços especiais serão computados separadamente.

Solos inconsistentes

Caso ocorram solos de baixa consistência, medidas especiais poderão ser necessárias, como, por exemplo, a injeção de aglutinantes no solo envolvente ao bueiro a executar. O tipo, a quantidade e o processo de injeção do aglutinante serão definidos através de estudos específicos, e considerados separadamente.

Revestimento de concreto

O bueiro metálico poderá ser, opcionalmente, revestido de concreto, passando os anéis de aço a servir de forma perdida. O revestimento poderá ser feito com concreto projetado ou com concreto bombeado, caso utilizando-se neste metálicas curvas removíveis. Este concreto poderá ser armado ou simplesmente utilizar uma tela de arame para ancoragem. Após o lançamento do concreto ou a desforma do concreto bombeado, a superfície interna receberá ainda um acabamento de pedreiro, de maneira a tornar-se o mais uniforme possível. Este serviço especial, se utilizado, será computado separadamente.

14. Bocas de saída

Concluída a montagem dos anéis de chapa metálica corrugada, serão executadas as bocas de jusante e montante em concreto. Para bueiros metálicos com diâmetro até 160 cm, serão utilizadas as mesmas bocas de saída indicadas para bueiros tubulares de concreto de diâmetros aproximadamente iguais. Já para bueiros metálicos com diâmetros superiores a 160 cm, serão adotadas as bocas de saída de bueiros celulares de concreto. Neste último caso, a boca do bueiro celular será adaptada para que o muro de testa se ajuste à seção circular do bueiro metálico.

Em qualquer caso, a extremidade do bueiro metálico será ancorada no concreto pela utilização

Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	2.09.03

de 12 (doze) parafusos galvanizados de diâmetro de 3/4", com 6" de comprimento, dispostos a cada 30º ao longo do perímetro do bueiro.

Bueiros Celulares De Concreto

O concreto utilizado no corpo e nas bocas deverá ser dosado experimentalmente para uma resistência característica à compressão (fck min), de 15 mpa, devendo ser preparado de acordo com o prescrito nas normas NBR 6118 e NBR 7187.

Como leito de assentamento do corpo do bueiro celular e da laje de entre-alas, será utilizado um lastro de concreto magro.

Para revestimento de laje de fundo do corpo e de entre-alas será utilizada argamassa de cimento e areia no traço 1:3 em volume.

O aço utilizado nas armaduras será de classe CA-50A ou CA-50B.

As etapas executivas a serem atendidas na construção dos bueiros celulares de concreto são as seguintes:

Locação

A execução dos bueiros celulares deverá ser precedida da locação da obra, de acordo com os elementos de projeto.

A locação será efetuada mediante a implantação de piquetes a cada 5 metros e do nivelamento dos mesmos de modo que seja possível a determinação dos volumes de escavação.

Os elementos de projeto, tais como estacas, esconsidade, comprimento e cotas poderão sofrer pequenos ajustes nesta fase. A declividade longitudinal da obra deverá ser contínua.

Escavação

Os serviços de escavação das trincheiras necessárias à execução da obra poderão ser executados manual ou mecanicamente, em uma largura de 50 cm superior à do corpo, para cada lado. Onde houver necessidade de execução de aterros para se atingir a cota de execução do lastro, estes deverão ser executados e compactados em camadas de, no máximo, 15 cm.

Lastro

Concluída a escavação das trincheiras, será efetuada a compactação da superfície resultante, e as irregularidades remanescentes serão eliminadas mediante a execução de um lastro de concreto magro, com espessura da ordem de 10 cm, aplicado em camada contínua em toda a área abrangida pelo corpo e pela soleira das bocas, mais um excesso lateral de 20 cm para cada lado.

Nas situações em que a resistência do terreno de fundação for inferior à tensão admissível sob a obra prevista no projeto, deverá ser indicada solução especial que assegure adequada condição de apoio para a estrutura, como substituição de partes do material do terreno de fundação por material de maior resistência, apoio sobre estacas etc.

Corpo

A execução do corpo dos bueiros celulares será feita segundo três etapas de concretagem, desenvolvidas a partir da parte inferior da obra.

Primeira etapa de concretagem

Serão instaladas as armaduras da laje inferior e as formas das laterais, estas para dar apoio às armaduras laterais vinculadas. Segue-se a concretagem da laje de piso, até a cota superior das mísulas inferiores e a conseqüente vibração do concreto lançado.

Segunda etapa de concretagem

Serão posicionadas as armaduras das paredes e as formas laterais remanescentes. Segue-se a concretagem das paredes, até a cota inferior das mísulas superiores, e a conseqüente vibração do concreto lançado.

Terceira etapa de concretagem

Serão instaladas as formas e as armaduras de laje superior, e em seguida lançado e vibrado o concreto necessário à complementação do corpo do bueiro celular.

Vigas das cabeceiras

Nas extremidades dos bueiros serão executadas as vigas de topo inferior e superior, simultaneamente com a primeira e terceira etapas de concretagem.

Juntas de dilatação

Serão executadas juntas de dilatação a intervalos de, no máximo, 10 m. Estas juntas serão

Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	2.09.03

executadas interrompendo-se dois "panos" anexos de concretagem, segundo uma transversal à obra, com uma peça de madeirit e uma placa de isopor, cada uma delas com espessura de 1cm. Concretado o segundo plano, a peça de madeirit e o isopor serão retirados e a junta será preenchida com mistura de cimento asfáltico e areia, vertida a quente. Opcionalmente, pode ser executada junta do tipo Fungenband ou similar, que assegure a estanqueidade da obra.

Reaterro

Após concluída a execução do corpo do bueiro celular, dever-se-á proceder a operação reaterro. O material para o reaterro poderá ser o próprio escavado, se este for de boa qualidade, ou especialmente selecionado. compactação deste material deverá ser executada em camadas de, no máximo, 20 cm, por meio de sapos mecânicos ou placas vibratórias. Deve-se tomar a precaução de compactar com o máximo cuidado junto às paredes do corpo do bueiro e de levar a compactação sempre ao mesmo nível, de cada lado da obra. Esta operação deverá prosseguir até se atingir uma espessura de 60 cm acima da laje superior do corpo de bueiro, salvo para as obras em que seja prevista a atuação direta do tráfego sobre a obra.

Boca

A confecção das bocas (cabeceiras) dos bueiros celulares será iniciada pela escavação das valas necessárias à execução da viga de topo frontal. Segue-se a instalação das formas necessárias à concretagem desta viga e da própria soleira, a disposição das armaduras, o lançamento e a vibração do concreto. Nesta ocasião, deverão ser ainda posicionadas as armaduras das alas que se ligam à soleira, apoiadas em uma das formas de cada ala.

Posteriormente, serão instaladas as formas e armaduras remanescentes das alas, lançado e vibrado o concreto, concluindo-se a execução da boca.

Acabamento

Concluída a execução do corpo e das bocas, será efetuado o revestimento da laje de fundo do corpo e da soleira, utilizando-se argamassa de cimento e areia no traço 1:3.

Após terminada a obra, todas as erosões encontradas deverão ser preenchidas com

enrocamento de pedra jogada. As bocas deverão estar completamente desimpedidas de vegetação e outros detritos e permitir perfeito escoamento das águas de entrada e de saída.

03. CRITÉRIOS DE CONTROLE

O controle geométrico consistirá na conferência, por métodos topográficos correntes, do alinhamento, esconsidades, declividade, comprimentos e cotas dos bueiros executados e respectivas bolsas.

As condições de acabamento serão apreciadas, pela Fiscalização, em bases visuais.

O controle tecnológico do concreto empregado nos berços e bocas será realizado pelo rompimento de corpos de prova à compressão simples, aos 7 dias de idade, de acordo com o prescrito na NBR 6118 da ABNT para controle assistemático. Para tal, deverá ser estabelecida, previamente, a relação experimental entre as resistências à compressão simples aos 28 e aos 7 dias.

O controle tecnológico dos tubos empregados deverá atender ao prescrito na NBR 9794 da ABNT - Tubos de Concreto Armado de Seção Circular para Águas Pluviais. Em princípio, serão executados apenas ensaios à compressão diametral, atendendo ao definido na NBR 9795 da ABNT, formando-se amostras de 2 peças para cada lote de no máximo 100 tubos de cada diâmetro utilizado. Ensaios de permeabilidade e absorção somente serão exigidos se existirem suspeitas quanto às características dos tubos utilizados.

O serviço será considerado aceito desde que atendidas as seguintes condições:

- O acabamento seja julgado satisfatório;
- As características geométricas previstas tenham sido obedecidas. Em especial, as variações para mais ou para menos do diâmetro interno do tubo, em qualquer seção transversal, não devem exceder 1 % do diâmetro interno médio;
- A resistência à compressão simples estimada (fck est) do concreto utilizado nas bocas e berços, definida na NBR 6118 da ABNT para controle assistemático seja superior à resistência característica especificada;
- A resistência à compressão diametral obtida nos ensaios efetuados seja superior aos valores

Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	2.09.03

mínimos especificados na NBR 9794, para a classe e diâmetro de tubo considerados.

04. CRITÉRIOS DE MEDIÇÃO E PAGAMENTO

Bueiros Tubulares De Concreto

Será medida a extensão executada, expressa em metros lineares, discriminando-se o diâmetro interno do tubo e o número de linhas. Estará incluso na medição o volume de concreto utilizado na execução do berço e as formas laterais.

As bocas executadas serão medidas de acordo com o tipo empregado, pela contagem do número de unidades executadas.

Quando utilizados dissipadores de energia a jusante de bueiros, serão executados e medidos de acordo com a especificação de serviço correspondente.

Os enrocamentos, quando necessários, a escavação e o reaterro, bem como o escoramento e o rebaixamento do lençol freático para assentamento dos bueiros serão medidos e pagos separadamente.

Bueiros Metálicos

Será determinada a extensão executada, expressa em metros lineares, discriminando-se o diâmetro interno do anel montado, a espessura da chapa utilizada, o tipo de revestimento da chapa (simplesmente galvanizada ou revestida com epóxi) e o número de linhas. Processos especiais utilizados para o escoramento e a própria escavação serão objeto de medição em separado.

As bocas executadas serão medidas de acordo com o tipo empregado, pela contagem do número de unidades executadas e separadamente dos bueiros.

Quando utilizados dissipadores de energia a jusante de bueiros, serão executados e medidos de acordo com a especificação de serviço correspondente, separadamente.

Os serviços de escavação estão incluídos no preço do serviço, bem como todos os serviços relacionados a movimentos de terra necessários à execução do bueiro metálico. Esgotamento e escoramento serão medidos separadamente.

Bueiros Celulares De Concreto

Será determinada a extensão executada, expressa em metros lineares, discriminando-se as dimensões das células, o número de linhas e a altura de aterro prevista. Na medição do corpo considera-se incorporado o lastro de concreto magro.

As bocas executadas serão medidas de acordo com o tipo empregado, pela contagem do número de unidades executadas.

Quando utilizados dissipadores de energia a jusante de bueiros, serão executados e medidos de acordo com a especificação de serviço correspondente.

Os enrocamentos, quando necessários, a escavação e o reaterro, bem como o escoramento e o rebaixamento do lençol freático para assentamento dos bueiros celulares de concreto serão medidos e pagos separadamente.

O pagamento será feito ao preço unitário proposto para cada diâmetro de tubo e número de linhas empregado, devendo este preço remunerar todas as operações, ferramentas e equipamentos, materiais, transporte, mão de obra, encargos e eventuais, necessários à completa execução do item considerado, incluindo o berço de concreto ciclópico.

As bocas de bueiro e os dissipadores de energia, quando executados, serão pagos ao preço unitário proposto, por unidade executada, estando também remunerados nestes preços todas as operações, ferramentas, equipamentos, materiais, transportes, mão de obra, encargos e eventuais necessários à completa execução dos itens.

Os movimentos de terra necessários à implantação dos bueiros serão remunerados pelos respectivos itens em planilha, separadamente dos bueiros, exceto no caso de bueiros metálicos, onde tais serviços estarão incluídos nos custos. Esgotamentos e escoramentos serão remunerados separadamente em todos os casos.

05. DOCUMENTOS DE REFERÊNCIA

Infra-estrutura	2
Redes de Drenagem	2.09
Bueiros Tubulares e Celulares	2.09.03

FONTE	CÓDIGO	DESCRIÇÃO
ABNT	NBR 6118	Projeto e execução de obras de concreto armado
ABNT	NBR 9794	Tubos de Concreto Armado de Seção Circular para Drenagem Pluvial
ABNT	NBR 9795	Tubo de Concreto Armado – Determinação da resistência à compressão diametral.
DNER		Especificações de Serviços de Drenagem - 1ª versão - Maio de 1988.

